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Abstract 

The lack of robot applicable MOT models with SOTA performance was to be resolved by 

this thesis work. The real-time ability was improved by developing an inference speed 

test and creating a faster and smaller model. Knowledge distillation was applied to 

maintain tracking performance, which would be lowed by the reductions required to 

reach real-time. The result was a reduced TransTrack model that operated at 18Hz and 

achieved 34.5% MOTA performance. The model trained normally only had 33.1%. This 

achievement shows there is benefit in applying knowledge distillation to MOT training. 

However, the chosen approach produced insufficient performance. The proposed model 

was only achieved a far lower MOTA tracking performance than the original model. Its 

performance was also worse than non-SOTA real-time MOT solutions. Therefore, the 

proposed model is not robot applicable. 
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1 Introduction 

In this thesis, I attempt to address the lack of robot applicable models that have SOTA MOT 

performance. Most MOT research ignores creating systems that are overall ready for robot use. 

Accurate tracking is an important feature in robotics. In high-speed autonomous driving, it 

allows for trajectory predictions to prevent collisions. In this thesis, I attempt to address the 

robot application of SOTA MOT models. The focus on reaching the real-time requirement.  

Robotic problems, such as navigation and motion planning, require an awareness of the agent’s 

surrounding objects and an ability to predict their movement [1][2]. For that reason, the Multi-

Object Tracking (MOT) task is vital [3].  This task aims to produce estimates of the spatio-

temporal trajectories of multiple objects. The result is all objects within an input (eg. video or 

depth point clouds) being uniquely identified and tracked throughout time. The use of the 

state-of-the-art transformer architecture [4][5] has produced good performance on the MOT 

task [6;7-12]. The reason for this is that dominant MOT methods keep object detection as a 

fixed, independent process (tracking-by-detection). This leads to poor tracking performance, 

like tracking failures when objects are occluded, deformed, or change appearance [1][13]. 

Transformers leverage the sequential temporal structure of the tracking problem, where each 

visual feature and embedding developed are relevant in future processing [6]. Transformer-

based MOT solutions have shown the ability to perform well in these failure cases. However, 

the models of this new paradigm do not ensure their accessibility to robotic applications. 

Additionally, the MOT problem is considered complex and not completely solved. State-of-the-

art solutions are frequently progressing the area of study but often lack a connection to the 

real-world applications. For example, many state-of-the-art solutions focus solely on video 

input for 2D MOT. However, robotic systems are often multi-modal (combine multiple sensors) 

to have robust vision [1]. Also, these systems’ ability to operate in real-time, a term meaning at 

an acceptable speed, are often not evaluated, or considered. The focus often laying on their 

proposed system’s tracking performance. In many cases this increases the computational load 

and reduces inference speed.  
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This research will develop a novel real-time MOT model to address the lacking evaluation of the 

innovative transformer-based systems’ capabilities with regards to the robotic scenario. 

TransTrack, a state-of-the-art deep learning MOT model, will be leveraged as the foundation 

[4]. It has successfully applied the transformer to the tracking problem but has not explored 

producing an effective real-time solution. The initial sub-objective to achieve our goal was to 

reproduce the results of the initial model. Next, changes were made to improve TransTrack’s 

speed. This will come at the cost of tracking performance. Knowledge distillation for MOT is 

proposed to improve this reduced model’s performance through leveraging the original fully 

trained model. Finally, the proposed model’s performance will be evaluated. 

A python implementation of TransTrack was used. An inference speed test was developed and 

used in producing our proposed real-time model. The training and evaluation of our models will 

be over the benchmarking dataset MOT17 [14]. It includes videos with annotations for tracking. 

Our model’s tracking performance was determined by using the multiple object tracking 

accuracy (MOTA) [15].  

The contribution of this research will include the following: (1) we will purpose a novel online 

MOT model, (2) evaluate knowledge distillation for MOT training, and (3) evaluate the 

performance of the MOT transformer architecture in the robotic scenario (real-time). Beyond 

the proposed model, the procedure outlined will be transferable to future SOTA models. This is 

a step in developing robotic perception. A field that becomes more important as we move 

towards a future where robotics systems operate in diverse real environments and have 

significant responsibilities.  
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2 Literature Review 

2.1 MOT 

The multiple object tracking (MOT) or multi-object tracking task is the process of taking video 

input to identify all objects and how their positions change with time [16]. Each video frame will 

have all objects identified with a bounding box, in the image domain. These detections are 

related across frames using IDs that uniquely identify the object’s trajectory. The difference 

with the single object tracking (SOT) task is that a single object is tracked given a known 

appearance. 

The evaluation of MOT algorithms does not have a single clear metric. Instead, a set of metrics 

are used that were employed by many benchmarking tools, like the MOT17 dataset [14]. 

Multiple Object Tracking Accuracy (MOTA) [17] is the most accepted metric that gives an 

indication of overall performance of the tracker. It incorporates 3 sources of error. The number 

of false positives, false negatives, and identity switches. The latter is when a prediction switches 

to tracking a different ground-truth. Multiple Object Tracking Precision (MOTP) is a metric that 

gives a measure of localization precision. It is how well any true positive result overlaps with 

the assigned ground truth. MOTP is more related to the accuracy of individual detections and 

does not say a lot about tracking performance. IDF1 is a measure that determines the ability to 

preserve the track identity over the entire sequence.  

2.2 MOT Connection to Robotic Applications 

MOT is essential to autonomous driving.[18] Localization is often not enough when in high-

speed situations. Instead, understand and predicting the trajectories of objects is necessary to 

maintain safe operation.  

Multi-modal is necessary because of the need to gain information about objects in the vehicle 

frame. This is often competed using multiple cameras, lidar, or other sensor inputs. 

Traditional object tracking used data association after objects were detected.  Many employing 

appearance models to leverage the help maintain tracks of the right object.  Recent models use 
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deep learning approaches that become better at avoiding issues such as identity switches and 

lacking tracking performance. These are more computationally expensive and require datasets 

for their training. 

The limitation of current robotic applicable technique is that MOT performance is not solved 

yet. Using previous outdated models will produce inferior results, that could jeopardize the 

safety in robotic operations. However, there is not consistent work in adapting newly proposed 

techniques for robotic applications. 

2.3 MOT Approaches and Example Solutions 

MOT systems have two popular approaches. They are tracking by detection and joint detection 

and tracking. Tracking by detection is the dominate approach applied by state-of-the-art MOT 

algorithms. It involves first using an object detector on individual frames. This results in the 

localization of all the frames’ objects, often as bounding boxes. The second step is to then 

associate these detected objects between frames using some method. A simple example is 

using the Intersection over Unions (IoU), which determines the overlap between areas. An 

advantage of this approach is the ability to separately improve the detection and association 

segments [19]. For example, easily applying a new state-of-the-art object detector into the 

design of a MOT system. However, the tracking ability is impacted because of the information 

lost when only associating detected objects. For example, visual features of each frame.  The 

association step can be completed considering object motion. SORT [20] used a Kalman filter 

[21] to create predictions of a detected object’s location in a future frame from previous 

frames. It then applied the Hungarian algorithm to associate predictions with detections of a 

current frame’s objects. DeepSORT [22] uses a convolutional neural network (CNN) to find a 

different association metric that incorporates motion and appearance similarity.  

Joint detection and tracking is another popular approach that differs from the previous 

approach by completing detection and tracking simultaneously, in one-shot. The main benefit 

being that information is available between frames. These are often created by building off an 

object detector. An example of this is FairMOT [23] which used CenterNet as a backbone and 
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built a branch that learned to use appearance (re-identification) embeddings for data 

association.  

These joint methods usually only operate on the current and previous frame. This would affect 

their ability to track objects that are occluded for longer than the number of frames considered 

at each interval. In this event, the track is deleted. To account for possible reappearances of 

that object, many trackers employ track rebirth. This is a method to store previously eliminated 

tracks for a given amount of time. They are then reopened when that object reappears.  

An online MOT model takes in input sequentially and update tracks using current and past 

information. This is different from offline MOT models, that have access to all data and usually 

produce a batch tracking output. Robotic applications where MOT is necessary are in the online 

domain. A “real time” MOT model is one that can inference at a high FPS (>= 20HZ). 

For training and benchmarking the two real-world datasets MOT16 or MOT17 are often used 

[24]. They include several video scenes where pedestrians are tracked and annotated with 

bounding boxes surrounding them. 

2.4 Transformer Architecture 

The transformer [4] architecture can capture long-range dependencies and sequential 

information. This was originally designed for the NLP problem but became popular in computer 

vision. Recently, MOT systems were based around transformers to better exploit the spatial-

temporal relations between sequential frames. This includes information about the object’s 

appearance previously extracted being useful in later tracking inference. Transformer-based 

MOT systems include TransTrack [25], Trackformer [6], PatchTrack [26]. 

Transformers use attention functions. They take a set of key-value pairs and a query as input. 

The output is determined by a weighted sum of the given values. The weight is computed from 

a compatibility function of the query to the value’s corresponding key. The specific function 

used in transformer architecture is the scaled dot-product attention. The dot products of the 

query and keys are computed then divided by square root of the keys’ dimension. This is 
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because of a hypothesis that large key dimension will result in large dot products. Finally, a 

softmax function is applied given the final weights. 

Self-attention and cross-attention blocks are used in the encoder and decoder of the 

transformer architecture. The self-attention blocks all have values, keys, and queries come from 

the same place. Cross-attention does not have this constraint. Also note in figure 1 that 

attention functions grow in complexity with the sequence length.  

A standard transformer can be seen in figure 1. It shows a single layer of encoder-decoder 

structure. The left and right grey boxes respectively. Each encoder incorporates two sub-layers, 

a self-attention mechanism followed by a fully connected feed-forward network. The decoders 

have 3 sub-layers, a self-attention block, cross-attention block, then a fully connected feed-

forward networks. Positional encodings are embeddings inputted at the bottom of stacks of 

encoders and decoders to give position information in the sequence of the tokens.  

Multi-head attention refers to using the linearly projecting the single attention function N 

times, then concatenating and projecting into the result. This allows for different 

representations subspaces at different positions to be jointly attended to. 

 

 

 

 

 

Figure 1: Transformer Architecture (left), Attention Function Complexity Comparison (right) [4] 
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Figure 2: TransTrack Architecture [25] 

2.5 Transformer-based MOT Solutions 

Often transformed-based MOTs use a CNN to obtain a feature map of frame images. These 

feature maps are then used as the input for the transformer encoder-decoder structure. An 

example is TransTrack’s architecture, shown in figure 2, where the previous and current frame’s 

feature maps are inputted. They use two decoders. One decoder takes a learned object query 

input and decodes detection boxes for the current frame. This object query is a set of trained 

parameters. This branch was developed following DETR [27], a transformer-based object 

detector. The object query looks for objects of interest in the key, the feature map inputted in 

cross-attention. This decoder’s object feature map is the high dimensional output of decoder 

before refining into bounding boxes. It stores the location and appearance of objects in the 

frame. The previous inference step’s object feature map is used as a “tracking” query for the 

second decoder. It is used to decode tracking bounding boxes, an approximation of where 

previous seen objects should be on the current frame. Association between the detection and 
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tracking bounding boxes using Intersection over Union matching and the Hungarian algorithm 

[28] to produce the current step’s final output. This explains how TransTrack can complete the 

MOT task. 

TransTrack’s training loss is the weighted sum of 3 terms. The first is a focal loss comparing the 

predicted classifications and category labels ground truth.  The next 2 are a L1 loss and 

generalized IOU loss comparing the normalized center coordinates, height, and width of 

bounding boxes from the model and ground truth. 

The TransTrack model did not investigate its real time capability, which is an essential demand 

of practical MOT applications. Transformers have already been known for their complexity and 

large resource demand. Additionally, the MOT case results in larger sequence length in the 

attention blocks, which is quadratic to the complexity per layer. On top of that, TransTrack 

reached relatively higher results by applying dual decoders branches. 

Trackformer [6] is another transformer-based MOT that built off deformable DETR. Two 

decoder branches were not used. Instead, the track queries, found like in TransTrack, are 

merged with a static object query. This combined query is then used in a single decoder branch 

to produce MOT results. While computationally less expensive, this system produces worse 

results than TransTrack (MOTA 65.0 vs 75.2).  

A variety of other transformer-based MOT methods have been created [29], with complying 

developments. However, they are unable to produce results that rival the peak MOT methods. 

At best being comparable. Additionally, these methods do not consider their practical 

application with an analysis of its real time ability. 

These systems have proven to have satisfying tracking accuracy. However, none of these 

studies have investigated the real time ability of the transformer-based tracker. In practical 

application of these MOT systems, the inference speed is an essential demand. 

2.6 ByteTrack 

ByteTrack [30] is a tracking by detection system that uses a novel association method, BYTE. It 

associates every detection box. First high confidence detections boxes are mapped to tracks 
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using motion similarity (eg Kalman Filter). Then the remaining unmatched tracks are matched 

to low confidence detections boxes. ByteTrack was created by applying this Byte to a state of 

the art object detector, YOLOX [31]. It is a recent MOT method and has produced state of the 

art results according to key metrics, as well as maintain a high FPS inference speed. This means 

that it is practical for the real-world application. 

2.7 3D MOT and multi-modal 

MOT benefit from camera-lidar input. Camera input allows for 2D information with high 

resolution. However, lidar (point cloud) input gives 3D information at a high accuracy. Sensor 

fusion is the process that enables these different inputs to be used in the same model. This 

approach is very common in the 3D MOT specialty [32,33,34]. 3D MOT involves the ability to 

return the trajectories of objects in the 3D world frame. This usually takes the form as a 

bounding box (3D). What was previously in this document is also referred to as 2D MOT. While 

some techniques are similar between 2D and 3D tasks, there are several differences between 

the tasks. For example, the generally accepted benchmarks differ, being Waymo Open Dataset 

[35], KITTI [36] or nuScenes [37].  

For 3D MOT, many solutions follow the protocol described in [3][38] that defines metrics for 3D 

MOT like average MOTA (AMOTA). A difference with 3D MOT is that tracking occurs with 3D 

bounding box, instead 2D MOT’s 2D bounding boxes. 

2.8 Knowledge Distilling and Addressing Computational Complexity 

Knowledge distilling [39] is the method to better train a smaller model, based on the learning of 

a larger one. The idea is that using the “soft targets” generated from a larger model, will allow 

the smaller model to train better that if ground truths were used. The procedure [39] 

introduces for distillation is to determine a subset of the full training set, called the transfer set. 

For each case, compute the soft target distribution using the large model with a high 

temperature in its softmax output layer. This results in a softer probability distribution over 

classes. Continue training using a high temperature, then once completed swap back to a 

temperature of 1. 
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A modification offered to increase the distilled model’s ability to compute correct labels is as 

follows. Two different objective functions are created, and the distilled model is trained on its 

weighted average. The first takes the cross entropy of the soft targets, while the second is the 

cross entropy with the correct labels. It is recommended to have the former use a high 

temperature, while the latter has a temperature of 1. 

This however is ultimately a strategy that allows for more efficient training, without clear 

indications on producing an effective smaller model. 

In the NLP field, distilling a transformer and reproducing the same results was possible with a 

1/40 sized distilled model [40]. They followed work in [39] and improved upon the 

CodeSearchNet challenge’s leader at the time [41]. 

For the single object tracking task, recently [42] introduce “exemplar transformers”. Overall 

applying transformers to maintains relatively state of the art results, while also having high 

inference speed, 47 FPS. In comparison, it determined that the other state of the art methods 

all produced less than 10 FPS and are not real-time. Also, it produced this high FPS inference on 

CPU, while most inference speed calculations use relatively good single GPUs. This was possible 

because of the exemplar attention’s changes to the normal scaled dot-product attention. It 

resulted in a O(Ek2ND2) computational complexity from the original O(N2D). Here N is the 

associated with the spatial size (HW) which is far larger than the D term, feature dimension. 

Therefore, reducing the complexity to be quadratic in D is the reason for the lower 

computational load. However, as mentioned this was not designed for the MOT task. 

Additionally, changing the number of encoder-decoder layers in the transformer architecture 

will reduce tracking performance and the computational load [25]. 6 layers are originally used, 

so experimenting with fewer layers might allow these systems to reach real time inference 

quality. Also, reducing the inputted image dimensions inputted into the system will reduce the 

computational complexity, while again trading off for performance. 
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3 Methods 

3.1 Choosing SOTA Transformer-based MOT model 

A state-of-the-art transformer-based MOT model was selected as the basis. These are 

presented with papers. Most supply an implementation of their design. The search can begin in 

a variety of places that host these papers. An example of these are paperswithcode.com and 

arxiv.org [3,43]. This search is to be completed using keywords relevant to the task such as: 

MOT, 3D MOT, real-time, online. 

A good indicator for the impact of these papers, is the number of times they are cited. This is 

because the current SOTA models often used in subsequent papers for their benchmarking 

studies. Following this trail will lead to understanding the current SOTA. This is limited to 

models created within the last year. 

Factors that affected the model choice were tracking performance, size, and amount of training 

required. Additionally, models that better met the robotic scenario are desired. This would 

eliminate additional work to develop a fully robot applicable solution.  

The chosen model’s training was reproduced to ensure the implementation is accurate. This 

was not done in its entirety because of limited compute. 

3.2 Inference Speed (FPS) Evaluation Procedure 

The FPS evaluation script can take in any video and completes the MOT task. It computes the 

elapsed time of each inference. After 50 frames, an average inference speed (FPS) is calculated.  

At each iteration, outside of the timed segments, the output annotations are projected onto 

each image and saved. They show the predicted bounding boxes and the track identifications 

for the unique object followed. These are also color coded. Finally, these images are used to 

generate a video. 

When using video input, the FPS evaluation script simulates live operation. This means that 

frames are missed during the time the model takes to produce an iteration’s output. This 

simulates an application of MOT in the robotic scenario. These outputted annotated videos are 



12 

used as a qualitative check. The performance during tracking failure cases like occlusion can be 

observed. The video input selected was from outside of the dataset the models were trained 

on. 

It was also helpful to see the elapsed time of specific sections of the model. This was 

implemented by printing out elapsed times, and tabulating from the log manually. This method 

was used because of the difficulty in passing information between the dozen programs 

necessary in the model’s operation.  

Inference speed refers to the time from image taken to annotations produced. The pre-

processing of each image frame, before it is inserted into the model, is treated as part of the 

model’s inference speed. Additionally, the output section excludes producing each iteration’s 

annotated image, since the bounding boxes themselves are sufficient for completing the MOT 

task. The annotated image would serve little purpose in a robotic pipeline. 

3.3 Reduced the Original (Large Model) to Approach a Real-Time Solution (Small 

Model) 

I experimented with various configurations to have the chosen SOTA model become real-time. 

This relied on the previous FPS evaluation script.  

Reducing the model to reach real-time is beneficial over finding a real-time MOT solution, 

because it could ideally maintain the SOTA’s improved tracking performance. Real-time MOT 

solutions are usually behind in terms of tracking performance and research attention. 

This procedure does not have specific guidelines. All that is desired is that real-time (>25Hz) is 

achieved.  A strategy used was to not train each experimental model. This allowed for more 

rapid experimentation to see how model changes affect inference speed. The number of 

parameters for each model should be recorded. This can be informative and is expected to be 

correlated to the overall speed of the model. 

Also, understanding the selected model’s architecture and how it is implemented is crucial. An 

IDE that incorporates breakpoints is helpful. This will give you the ability to step through the 
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implementation of the model. A better understanding of the model’s implementation can be 

gained, especially if it is separate throughout a dozen programs in various subfolders. 

One modified model should be selected to go forward with. This will be called the “small 

model”, the reduced model developed from a chosen SOTA “large model”. 

3.4 Implement Knowledge Distillation and Train Model with Both Approaches 

Now I developed a knowledge distillation technique for MOT to improve the small model’s 

training.  

The implementation I propose is altering the MOT17’s ground truth dataset. A dataset is 

created by making the fully trained large model generate annotations from the training and 

validation samples. This includes predictions for both the bounding boxes and class confidence. 

The bounding boxes would now become sub pixel, and the class confidence is the large’s 

models confidence instead of a one hot encoding of the detected class. Note that the only class 

is pedestrians in MOT17. 

This technique leverages the success of KD on object classification, with its similar methods. 

Compared to normal training, they suggested transferring more in-depth features then just the 

hard targets. Instead of just learning to reproduce a task, it learns off the “soft targets” as well. 

This was represented as an additional loss term that compared the probability distribution each 

model found over all possible classes. The success of KD in this object classification 

implementation motivates my approach. 

A dataset is to be built instead of producing the “soft targets” at each iteration. This will avoid 

additional time in training the models. The evaluation of the KD trained model, will be on the 

ground truth dataset.  

The small model is trained with and without the proposed KD implementation. Once fully 

trained, they will be evaluated on the MOT17 ground truth validation set. Their MOTA scores 

will allow for the comparison of their tracking performance. As well as the FPS evaluation script 

being used to produce qualitative comparisons from their produced demonstrations. 
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Additionally, the large model’s results, after similar training, will be taken or produced. This will 

allow for seeing how well the KD method did at recuperating the original model’s performance. 

The results will also be compared to non-SOTA real-time models.  Another qualitative 

comparison can be completed. 

3.5 Unexplored Multi-modal Ability 

Within the scope of this thesis was also developing the proposed model to be multi-modal from 

the original SOTA 2D MOT solution. This work was not done. In this section, I discuss the 

procedures outlined for that task. 

This proposed model would take both video and point cloud input, which is normal for multi-

modal MOT models [1]. We will then design and train a multi-modal model that is an 

improvement on TransTrack. Finally, the developed model’s performance would have been 

compared to existing 3D MOT models, like EagerMOT and JRMOT [1][27]. These were selected 

because of their success with the multi-modal MOT task. 

Multi-modal fusion techniques would need to be investigated in the designing step. The KITTI 

dataset would be used for training and evaluating the final model [36]. It includes camera and 

lidar recordings with annotations for object detection and tracking. Instead of MOTA, average 

MOTA (AMOTA) [4][38] is the metric commonly used for 3D MOT. 
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4 Results and Discussion 

4.1 FPS Evaluation 

This table shows the results of experiments to reduce the TransTrack model. Empty entries 

refer to the default settings being applied. Each experiment had the changed model’s inference 

speed evaluated in terms of FPS. The number of trainable parameters was also found. The table 

is setup to show the impact of each individual model component change and is not an 

exhaustive log of all experiments.  

 
Experiment # (Blank refers to default settings) 

Components 1 (Large 
Model) 

2 3 4 5 6 7 8 9 (Small 
Model) 

largest dim of 
inputted image 

800 800 800 800 800 800 800 800 800 

# of encoding layers   1 3      1 

# of decoding layers   1 3      1 

OD Backbone    resnet18     resnet18 

# of feature levels      1    1 

Embedding size 
(hidden dim) 

     64   64 

Dim of feedforward 
layers 

      512  512 

# of query slots        250 250 

# of params 
(million) 

47.2 32.5 38.3 30.6 40.8 28.3 42.5 47.1 11.5 

FPS Evaluation 7.91 10.33 8.36 7.49 9.23 7.75 7.27 8.01 18.62 

 

Table 1: Reduction Experiments with FPS Evaluation 
The largest dimension of the inputted image is the parameter that downsizes frames. I choose 

800 pixels because memory limitations made operating on full sized images impossible (1920 

x1080). This is using the 8GB GPU chosen as the robotic equivalent compute. For this thesis, I 

will treat 800 pixels as the default largest dimension.  

The experiments that changed the number of encoding and decoding layers produced large 

improvement to inference speed. On average the other sections resulted in a 0.9 Hz 

improvement. The minimal layers experiment produced a 3.28 Hz change, which displays its 

significant impact. 
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Selecting a different object detection backbone resulted in a small improvement in FPS. This is 

expected from resnet18 having a faster inference speed than its alternative configuration 

resnet50. The number of feature levels refers to the number of intermediate layers taken from 

the backbones forward pass, as input into the transformer. Decreasing this initial input causes a 

decrease of many subsequent calculations. This matches the found result, where this 

component contributes to a large 2Hz increase. The embedding size, dimension of feedforward 

layers, and number of query slots have been shown to produce relatively minor improvements 

in inference speed. The number of parameters for the model appears to not directly correlate 

to lower inference speed. This can be seen by comparing experiments 3 and 6.  

Overall, the “small model”, shown as experiment 9, produces an inference speed of 18.62 FPS. 

This is an 11 FPS improvement from the large model. The model has not met the required real-

time capability, but I went forward using it as the proposed model. It will be used in the 

knowledge distillation experiments. Its severe reductions were expected to impact its training 

capacity, resulting in worse tracking performance. Therefore, the model would benefit from an 

effective method of training that leverages the original fully trained TransTrack (experiment 1). 

The below graph depicts the large and small model. Their forward pass is separated into 4 

categories to illustrate where the inference speed improvements lay. The largest section of the 

large model is the “main section” which refers to all processes separate to the backbone, and 

backbone feature preprocessing steps. This separation helps illustrate that backbone selection 

alone, with more SOTA object detectors, is not sufficient to make a MOT model real-time. The 

large model shown here, would only reach 10 FPS inference speed under an ideal scenario 

where the backbone took 0 time. This is not promising regarding the fact that most SOTA object 

detectors operate with a similar inference speed to the resnet18, used in the small model. 
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Figure 3: Segmented FPS Evaluation of MOT Approaches 

Another result of this FPS evaluation was that it was observed that if the model “goes cold”, 

inference speed decreases. This refers to the time spent outside the models forward pass will 

decrease the forward passes speed when eventually started. This was seen with the FPS 

evaluation program, where annotating images were done after each iteration. This was 

excluded from the inference speed timing, but still impacted the speed of the model.  
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4.2 Reduced Model Architecture 

The result of reducing TransTrack to reach real-time is the “small model”. It was produced by 

experimenting with changes to the components of TransTrack. A comparison to the original 

TransTrack model, now referred to as “large model” is shown in the below table.  

Components 
Large 
Model 

Small 
Model 

Object Detection Backbone resnet50 resnet18 

Number of feature levels (intermediate layers of backbone) 4 1 

# of encoding layers in the transformer 6 1 

# of decoding layers in the transformer 6 1 

Number of query slots 500 250 

Size of the embeddings (hidden dimension of the 
transformer) 

256 64 

Intermediate size of the feedforward layers in the 
transformer blocks 

1024 512 

 

Table 2: Proposed Reduced TransTrack Architecture 

This below table compares the number of trainable parameters each model incorporates. It 

displays the 76% reduction between large and small models. This will affect the small model’s 

ability to learn to solve the MOT task as effective as the large model. 

Model Name Number of Parameters 

Large model 47203410 

Small model 11545594 

 

Table 3: Proposed Reduced TransTrack's Trainable Parameters Comparison  
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4.3 Training Improvement from Knowledge Distillation 

Loss curves were produced from the small model, with and without KD, from their 150 epochs 

of training. This training took 6 hours per 100 epochs using a single 8GB RTX 2080 GPU. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Training Loss Curves Comparing KD and Normal Training Approaches 

These curves show that the small model can learn better from the proposed KD method than 

using the original method (relative to each of their datasets). However, the effect of using 

knowledge distillation is relatively small. 

The bounding box (bbox) loss produces the greatest improvement with KD. The generalized IOU 

(giou) and class error (ce) loss in comparison have a very slight improvement. This can be 

understood because the overall loss gives a greater weight to the bbox loss, relative to the 

others (5, 2, and 2). 
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A checkpoint from the model could not be used as a starting point for training. This is because 

significant changes were made to the model. Our training was completed, with no prior 

information passed into the weights, except backbone pre-training from the torch 

implementation. 

4.4 Quantitative Analysis of Tracking Performance 

The below table compares the fully trained small models and large model (supplied 

checkpoint). The fully trained original TransTrack model chosen for this comparison was one 

that was not pre-trained and completed 500 epochs of training on MOT17. This allowed for a 

more direct comparison, because I could not pre-train the small models from limitations in 

compute. 

Models MOTA MOTP FPS 

Large (Supplied; 500 epochs) 61.90% 80.00% 7.9 

Small + KD (150 Epochs) 34.50% 24.00% 18.6 

Small + No KD (150 Epochs) 33.10% 24.40% 18.6 

 
Table 4: Tracking Performance of Fully Trained Large, Small (KD + No KD) Models 

The 150th epoch was chosen as the fully trained point for the small models, because of lacking 

compute and little improvement observed. A minor increase in tracking performance was 

observed between this point and the 250th epoch (34.5% to 35.7%) of the KD trained small 

model. 

Comparing the MOTA scores of these models show that the reducing the original TransTrack 

model had a significant effect on its MOT performance. Without knowledge distillation it 

roughly halved in performance. 

The success or failure of these small models can be determined from comparing to other real-

time MOT solutions evaluated on MOT17. These are mostly not SOTA and do not have peak 
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tracking performance. Some examples are FairMOT and ByteTrack, which both are real-time. 

Their MOTA scores are sufficiently high >75%[30,23]. This could partially be attributed to large 

amounts of pre-training, but as shown in TransTrack, no pretraining only resulting in 15% 

decrease in MOTA scores [25]. When compared to a 60% MOTA score, the small models are 

confirmed to be significantly lacking. In addition, the non-SOTA real-time models achieve ~30 

FPS, reaching the real-time requirement the proposed small model did not. It should be noted 

that their inference speed testing is not clearly explained so there is uncertainty. 

The methods to adapt a SOTA MOT solution presented in this thesis is insufficient, with these 

better performing real-time MOT solutions as a standard. However, the proposed idea is still 

promising. These real-time approaches are separate from the SOTA that focuses on tracking 

performance. An adaption procedure is more pro-active than waiting for real-time or robot 

applicable approaches to be developed, that might or might not be able to match up to the 

SOTA MOT models’ tracking performance. 

The proposed implementation of KD was unable to significantly improve the training of the 

small model. There is only a relatively small 1.4% MOTA increase, while their MOTP scores are 

similar.  

This can be understood by the relatively shallow proposed implementation of knowledge 

distillation. In the object classification example offered by the authors of KD, they suggested 

transferring features from the large model to the small [39]. This was an additional loss term 

that compared the probability distribution each model found over all possible classes. The layer 

before the softmax that produces a one hot encoding. Intuitively, this method allows the 

smaller model to gain more rich information about the task. 

The softmax output does not have the same benefit in this implementation because there is 

only one class, pedestrian. This can explain the limited improvement. The performance in multi-

class MOT could show better results, but pedestrian only datasets are the standard for the MOT 

task. Additionally, the proposed MOT KD method only other method to supply better 

information is from the subpixel bounding box annotations. However, this does not convey 

significantly more information than the hand-made ground truth annotations.  
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This result does suggest that building larger MOT datasets from the outputs of MOT models is a 

possibility. The learning from an artificial dataset was like that of the original. This claim is 

however weak, because of the low training performance of the KD trained model we cannot 

understand the upper limits of training possible on. There could be a limit to what a model 

trained on an artificial dataset could learn. A next step in this regard would be retraining the 

large model or an equivalent performing model, from scratch, on this artificial dataset. 

4.5 Qualitative Analysis of Tracking Performance 

Below is an example that shows qualitatively the lacking tracking performance of the small 

model. The pedestrians detected as #11 and #13 in the first image have their tracks swapped 

after an occlusion in later frames, like the second image. This is a common issue in low tracking 

performing MOT models.  

Another pair of images are the outputs of the same frames but now annotated by the large 

model. The identity swaps tracking failures, shown in the previous example, are not present. 

A comparison between the outputs of KD and non-KD trained small models is not shown. This is 

because there is little visual difference in their tracking performance. This is too be expected 

from the minimal difference in MOTA. 

Additionally, it is visually seen that the large model missing frames from its slower inference 

speed did not affect its tracking performance. It was still very able to outperform the real-time 

model. This is excluding the complications that having a non-real time model would produce. 
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Figure 5: Annotated Images of Tracking Failure Example for KD trained Small Model  
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Figure 6: Annotated Images of Successful MOT example for Trained Large Model  
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4.6 FPS Evaluation Differences Comparing Local Machine and Google Collab. 

Environment FPS 

Local Machine 3.96 

Google Collab 1.29 

 

Table 5: Local Machine vs Google Collab Effect on a Model's FPS Evaluation 

It was found that the environment used can significantly affect the inference speed of the 

model. The local machine is equipped with an RTX 2070 8 GB GPU. Google collab supplies a 

NVIDIA Tesla K80 12 GB that is 4 years older and is slower [44,45]. This difference was observed 

in the inference speed test producing significantly different results for the same model 

depending on environment. 

All FPS evaluations were completed using the local machine. It’s newer GPU would better relate 

to the available compute on board a robotic system currently. This is also because of limitations 

in my experimental setup, referring to using the computer I had available. 

This GPU hardware improvement in only 4 years shows that improvements in GPU hardware 

could eventually close the gap of even the large model achieving real-time. However, newer 

SOTA models continue to be more computationally expensive, so there is still a need to rely on 

knowledge distillation.  

4.7 Key Claims  

The key claims this thesis can offer is that the proposed implementation of knowledge 

distillation was unable to significantly improve the training of a small MOT model. However, the 

progress shown is evidence of the possibility of KD’s application in the MOT space. Additionally, 

the reduced model produced is not sufficient to be used because of its lacking tracking 

performance. Finally, the SOTA adaption procedure offered was unable to compare to the 

current real-time solutions. 
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5 Conclusion 

The thesis work attempted to develop a novel model that is SOTA and robotic applicable. This 

was not successful. The current proposed model’s prospects firmly show that it should not be 

used. The goal of the work was not reached but the research did allow for gains. It was able to 

show there is some promise in applying knowledge distillation to the MOT task. The purposed 

KD method, while shown to produce little benefit, has not explored its true limitations. For 

example, the maximum possible learning on the artificial dataset. Also, other possibilities for KD 

MOT training exist. Future work could explore using the large model’s intermediate features as 

a loss. This is a practice present under knowledge distillation for object detection. Another 

avenue is the work outlined but not explored. This being the development of a method to 

adapt SOTA 2D MOT solutions to be multi-modal and solve the 3D MOT task. 
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